pyhazards package¶
Subpackages¶
- pyhazards.datasets package
- Submodules
- pyhazards.datasets.base module
- pyhazards.datasets.registry module
- pyhazards.datasets.transforms package
- pyhazards.datasets.hazards package
- Module contents
- pyhazards.models package
- Submodules
- pyhazards.models.backbones module
- pyhazards.models.heads module
- pyhazards.models.builder module
- pyhazards.models.registry module
- Module contents
- pyhazards.engine package
- pyhazards.metrics package
- pyhazards.utils package
Module contents¶
- class pyhazards.CNNPatchEncoder(in_channels=3, hidden_dim=64)[source]¶
Bases:
ModuleLightweight CNN encoder for raster patches.
- class pyhazards.ClassificationHead(in_dim, num_classes)[source]¶
Bases:
ModuleSimple classification head.
- class pyhazards.ClassificationMetrics[source]¶
Bases:
MetricBase- _abc_impl = <_abc._abc_data object>¶
- class pyhazards.DataBundle(splits, feature_spec, label_spec, metadata=<factory>)[source]¶
Bases:
objectBundle of train/val/test splits plus metadata. Keeps feature/label specs to make model construction easy.
-
feature_spec:
FeatureSpec¶
-
metadata:
Dict[str,Any]¶
-
feature_spec:
- class pyhazards.DataSplit(inputs, targets, metadata=<factory>)[source]¶
Bases:
objectContainer for a single split.
-
inputs:
Any¶
-
metadata:
Dict[str,Any]¶
-
targets:
Any¶
-
inputs:
- class pyhazards.Dataset(cache_dir=None)[source]¶
Bases:
objectBase class for hazard datasets. Subclasses should load data and return a DataBundle with splits ready for training.
- load(split=None, transforms=None)[source]¶
Return a DataBundle. Optionally return a specific split if provided.
- Return type:
-
name:
str= 'base'¶
- class pyhazards.FeatureSpec(input_dim=None, channels=None, description=None, extra=<factory>)[source]¶
Bases:
objectDescribes input features (shapes, dtypes, normalization).
-
channels:
Optional[int] = None¶
-
description:
Optional[str] = None¶
-
extra:
Dict[str,Any]¶
-
input_dim:
Optional[int] = None¶
-
channels:
- class pyhazards.LabelSpec(num_targets=None, task_type='regression', description=None, extra=<factory>)[source]¶
Bases:
objectDescribes labels/targets for downstream tasks.
-
description:
Optional[str] = None¶
-
extra:
Dict[str,Any]¶
-
num_targets:
Optional[int] = None¶
-
task_type:
str= 'regression'¶
-
description:
- class pyhazards.MLPBackbone(input_dim, hidden_dim=256, depth=2)[source]¶
Bases:
ModuleSimple MLP for tabular features.
- class pyhazards.RegressionHead(in_dim, out_dim=1)[source]¶
Bases:
ModuleRegression head for scalar or multi-target outputs.
- class pyhazards.RegressionMetrics[source]¶
Bases:
MetricBase- _abc_impl = <_abc._abc_data object>¶
- class pyhazards.SegmentationHead(in_channels, num_classes)[source]¶
Bases:
ModuleSegmentation head for raster masks.
- class pyhazards.SegmentationMetrics(num_classes=None)[source]¶
Bases:
MetricBase- _abc_impl = <_abc._abc_data object>¶
- class pyhazards.TemporalEncoder(input_dim, hidden_dim=128, num_layers=1)[source]¶
Bases:
ModuleGRU-based encoder for time-series signals.
- class pyhazards.Trainer(model, device=None, metrics=None, strategy='auto', mixed_precision=False)[source]¶
Bases:
objectLightweight training abstraction with a familiar API: fit -> evaluate -> predict.
- _make_loader(inputs, targets, batch_size, num_workers, collate_fn, shuffle=True)[source]¶
- Return type:
Iterable
- evaluate(data, split='test', batch_size=64, num_workers=0, collate_fn=None)[source]¶
- Return type:
Dict[str,float]
- fit(data, train_split='train', val_split=None, max_epochs=1, optimizer=None, loss_fn=None, batch_size=32, num_workers=0, collate_fn=None)[source]¶
Minimal fit loop that works for tensor-based splits. Extend/replace with custom DataLoaders for complex data.
- Return type:
None