pyhazards.models package¶
Submodules¶
pyhazards.models.backbones module¶
- class pyhazards.models.backbones.CNNPatchEncoder(in_channels=3, hidden_dim=64)[source]¶
Bases:
ModuleLightweight CNN encoder for raster patches.
pyhazards.models.heads module¶
- class pyhazards.models.heads.ClassificationHead(in_dim, num_classes)[source]¶
Bases:
ModuleSimple classification head.
pyhazards.models.builder module¶
pyhazards.models.registry module¶
Module contents¶
- class pyhazards.models.CNNPatchEncoder(in_channels=3, hidden_dim=64)[source]¶
Bases:
ModuleLightweight CNN encoder for raster patches.
- class pyhazards.models.ClassificationHead(in_dim, num_classes)[source]¶
Bases:
ModuleSimple classification head.
- class pyhazards.models.MLPBackbone(input_dim, hidden_dim=256, depth=2)[source]¶
Bases:
ModuleSimple MLP for tabular features.
- class pyhazards.models.RegressionHead(in_dim, out_dim=1)[source]¶
Bases:
ModuleRegression head for scalar or multi-target outputs.
- class pyhazards.models.SegmentationHead(in_channels, num_classes)[source]¶
Bases:
ModuleSegmentation head for raster masks.
- class pyhazards.models.TemporalEncoder(input_dim, hidden_dim=128, num_layers=1)[source]¶
Bases:
ModuleGRU-based encoder for time-series signals.
- class pyhazards.models.TverskyLoss(alpha=0.5, beta=0.5, smooth=1e-06, from_logits=True)[source]¶
Bases:
ModuleTversky loss for binary segmentation.
- class pyhazards.models.WildfireASPP(in_channels=12, base_channels=32, aspp_channels=32, dilations=(1, 3, 6, 12), dropout=0.0)[source]¶
Bases:
WildfireCNNASPPBackward-compatible name for the CNN + ASPP wildfire model.
- class pyhazards.models.WildfireCNNASPP(in_channels=12, base_channels=32, aspp_channels=32, dilations=(1, 3, 6, 12), dropout=0.0)[source]¶
Bases:
ModuleCNN + ASPP wildfire segmentation model.
- Input:
x : (B, C, H, W) float tensor
- Output:
logits : (B, 1, H, W) float tensor (sigmoid applied externally)
- class pyhazards.models.WildfireMamba(in_dim, num_counties, past_days, hidden_dim=128, gcn_hidden=64, mamba_layers=2, state_dim=64, conv_kernel=5, dropout=0.1, adjacency=None, with_count_head=False)[source]¶
Bases:
ModuleMamba-based spatio-temporal wildfire model for county-day ERA5 features.
Input shape: (batch, past_days, num_counties, num_features) Output: logits per county for the next day (use sigmoid for probabilities)
- forward(x, adjacency=None)[source]¶
- Parameters:
x (
Tensor) – Tensor shaped (batch, past_days, num_counties, in_dim)adjacency (
Optional[Tensor]) – Optional (N, N) or (B, N, N) adjacency override.
- Returns:
(batch, num_counties) - optional counts: (batch, num_counties) if with_count_head is enabled.
- Return type:
logits
- pyhazards.models.build_model(name, task, **kwargs)[source]¶
Build a model by name and task. This delegates to registry metadata to keep a consistent interface.
- Return type:
Module
- pyhazards.models.cnn_aspp_builder(task, in_channels=12, base_channels=32, aspp_channels=32, dilations=(1, 3, 6, 12), dropout=0.0, **kwargs)[source]¶
PyHazards-style model builder.
- Return type:
Module