pygip.models.defense.SurviveWM¶ Module Attributes class pygip.models.defense.SurviveWM.SurviveWM(dataset, defense_ratio=0.1, model_path=None)[source]¶ Bases: BaseDefense _abc_impl = <_abc_data object>¶ _load_model()[source]¶ Load a pre-trained model. _to_cpu(tensor)[source]¶ Safely move tensor to CPU for NumPy operations _train_watermarked_model()[source]¶ Helper function to train the watermarked model combine_with_trigger(base_graph, base_features, base_labels, trigger_data)[source]¶ compute_metrics(y_true, y_pred, y_score=None)[source]¶ defend()[source]¶ Execute the SurviveWM defense. evaluate_model(model)[source]¶ Evaluate model performance on downstream task generate_key_graph(num_nodes=None, edge_prob=None)[source]¶ snn_loss(x, y, T=0.5)[source]¶ supported_api_types = {'dgl'}¶ train_target_model(metric_comp)[source]¶ Train the target model with watermark injection. train_with_snnl(model, graph, features, labels, train_mask, optimizer, T=0.5, alpha=0.1)[source]¶ verify_watermark(model, trigger_graph, trigger_labels)¶ verify_watermark_model(model)[source]¶ Verify watermark success rate